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OUTLINE

1. Plasma as a fluid

e Hydrodynamics

e Radiation transport

e Heat conduction: laser absorption
2. Hydrodynamic simulation code: ARWEN
3. Applications




PLASMAAS AFLUID



On plasma physics: begin with collections of individual
particles, to determine how to describe their behavior
statistically using the Boltzmann equation, and then to
average their behavior in ways that produce simpler
models of plasma dynamics.

Here we take the reverse path, beginning with the very
simple averaged equations that are useful in many high-
energy-density contexts, and working our way toward
more-complex descriptions that are more powerful but
also less-often necessary.

The moments of the Botzmann equations give us the
Euler equations: hydrodynamics of a plasma

The moments of the Boltzmann equation are not enough,
we need the constitutive equations: Equation of State.



SINGLE FLUID, THREE
TEMPERATURE



Identify a distinct temperature for the electrons, the ions,
and the radiation.

The value of the temperature of an equilibrium
thermodynamic system that would have the same mean
energy as that of the actual system being described.

The actual system, which might be an energy distribution
of electrons or photons, typically is not in equilibrium and
very often has an energy spectrum that departs
significantly from the equilibrium energy spectrum.

The 3T description of a single-fluid plasma is particularly
useful, especially for computer simulations.

Identifying three temperatures in a plasmais a
particularly paradoxical action, because the
thermodynamic definition of temperature only strictly
applies when they are all equal.



Electron thermalization time:

(mcz)1/2T3/2
t. = 0.2896 -
necetlog(A)
Electron-ion equilibration time:
A 3m.c?m;c? T, | T 3/2
“ 8(2m)2n;(Ze?)2clog(A) \ mec?  myc?

For Hydrogen, te; /te > 1

In the initial stages of a laser created plasma, electron and
lon temperatures could be very different.

Laser energy is deposited mainly in free electrons that will
transfer energy to ions later



HYDRODYNAMICS

Density p

Momentum pv

Total energy pE = p(e + 3v?)

Closure relation (incomplete EOS): p = p(p, €)

0 vp 0
pv| ,F=|vpv'—Ip| 5= Pg
L pE _ V(pE +p) _ PV g

Non-linear system of hyperbolic PDE



JUMP CONDITIONS: RANKINE-HUGONIOT

P1Un1 — P2Up2
(p1Un1)Ve1 = (P2Un2 )V
pl —p2 = pavy, — p1 — Vg

2 2
Un1 Un2
Unl (P1 + p1€101 7) = Un2 (pz + p2e2 + pzT)

Hugoniot equation
1 1 1
€2 — €1 = 5(292 + p1)

p1 P2



HUGONIOT CURVE

Left, Fe Hugoniot. Right, Al Hugoniot



HIDRODYNAMIC INSTABILITIES

- 0.00/047 #————

j 0:00/023 #P——--

Rayleigh-Taylor: Rytchmyer-Meshkov: Shock Kevin-Helmholtz:
density gradient wave interacting with contact Materialin the interface
against pressure discontinuity (jump in density) have different velocities

gradient.



RADIATION TRANSPORT

Transport of energy in the plasma by the photons
Transport equation for particles with no charge (Boltzmann e

1 0
v(E) Ot

U (x,QEt)+Q- VU (x,Q,Et)+
Y (x, B 0) VU (x,0,E,t) = 85(3

¥ depends on seven variables: space x (3), direction €2 (2), e
and time ¢ (1).

Numerical methods: diffusion (approx.), momentum method
discrete ordinates

Need to know spectral properties of materials: opacities and
emissivities



RADIATION TRANSPORT COEFFICIENTS
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ELECTRON HEAT CONDUCTION

e Transport of energy in the plasma by electrons
e Approximation by flux-limited electron heat diffusion:

E.

8(% =V (ke(T:)VT,) + S,
E;

8(% =V (k;(T;)VT}) + S;

e Highly non-inear diffusion coefficient: k. oc T'%/2

e The diffusion equation do not have any limit in the flux,
F = k. VT and in some cases the energy flux will
became too high: flux limiter.



COMPLETE MODEL

Op
0
- +V (vpv') = =V (Pa + P,)
OpE
W +V (pEV) = -V [(Pth + Pr) V] + Slaser + vo’ T qur
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LASER ABSORPTION IN PLASMAS
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LASER RAYTRACING

Fig. 4  An mcidopt leer my race
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LASER-PLASMA COUPLING

_aser absorption in the plasma and energy losses in the
low density coronal plasma

Heat transport to the dense plasma not reached by the
laser

Generation of the ablation pressure that will accelerate
the target

Compression work done by the shock




ARWEN: DESCRIPTION

ARWEN code is a simulation program for plasma
hydrodynamics in 2D. It includes:

Eulerian structured mesh in 2D

hydrodynamics: high-order Godunov method (fully
conservative)
Radiation transport: discrete-ordinates algorithm with energy
Laser energy deposition: for energy deposition in the
plasma.
Electron heat conduction: able to use a 2-temperature plasma model with
electronic heat diffusion.
Can work with either cartesan (XY) or cylindrical (RZ) coordinates.

And everything using an
scheme.



AMR

Example: density discontinuity.

e Hierachy of levels with higher
resolutions to cover the marked
regions.

e Use boxes of cells with higher
resolution where we need more
precision. Homogeneous errorin the
solution for the whole system.

e Reduce the number of cells to speed
up the calculations: make the
computational effort where we really
need it.




A SCHEME OF AMR ALGORITHM




A SCHEME OF ARWEN
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ARWEN INPUT DATA

e Equation of State:
= Real EOS using tabulated data: we have developed
method to generate EOS tables (1)
e Radiation transport coefficients: load tables with the
opacity and emissivity data.
= Opacity table generation using BigBART code (2)
e Simulation parameters:
= Target description
= |aser parameters
= Parameters for the numerical methods



APPLICATIONS

The simulation code ARWEN can deal with systems in the
high energy density regime.

The applications go from and optimization to

experimental

Laser-created plasmas

X-Ray secondary sources

ICF targets: target compresion, fast ignition scheme, ...
Laboratory Astrophysics (LA): radiative shocks,
astrophysical jets, supernovae remnants, ...



HIGH-ENERGY DENSITY REGIME
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LABORATORY ASTROPHYSICS
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EXPERIMENTAL SETUP
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LABORATORY ASTROPHYSICS
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e Left: electron density, white lineas
are material interfaces

e Right: temperature, radiative shock
isaround 16 eV

Play
Pause

Resume




LR RN R Lo TR A 8

-

""‘L_\:\.I_

=

=]

LS AL Lk PR e 3

o

o]

[BL L R P I ]




RADIATIVE SHOCK FORMATION

o Left: density

e Right: electron density, black lines
are material interfaces

e White lines are AMR boxes with
different resolutions

Play
Pause

Resume




ug = 20km/s

ug = 40km/s

P

ug = 60km/s
e Left: electron density, px. = 1.65 lcg/m3
e Right: temperature, px. = 1.65 kg/m’



ug = 40km/s
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PLASMA JETS

9 um thick
Al foil

D. Portillo, "Development of a numerical scheme for multimaterial
fluxes in 2D for ARWEN"
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SUPERNOVAE REMNANTS

Six different snapshots of the evolution of
the system that shows the density and
the volumetric fraction.

The sopernovae remnant
impacts the companion
star and pulls out part of
the mass of the
atmosphere (low density
envelopein ourtarget).



o Left: density
e Right: temperature
e White lines are AMR boxes with
different resolutions
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CONCLUSIONS

Rad-Hydro coupling with AMR

Robust methods

Versatile: successfull application to LA, X-Ray secondary
sources, ICF studies, etc.

Continuous evolution and development
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