NORMAL FAST ROTATING A- AND B-TYPE STARS SEEN POLE-ON

Frédéric ROYER (Observatoire de Paris)

Y. FRÉMAT (ROB, Belgium), R. MONIER (Univ. Nice, France), M. Gebran (NDU, Lebanon), J. ZOREC (IAP, France)

- 1. Context
- 2. Observing programme
- 3. Fast rotation, gravity darkening

CONTEXT

Spectral line broadening: $v \sin i$

 $v \sin i$: projection of the rotational equatorial velocity v on the line of sight

Bimodality of rotational velocity distributions

- Abt et al. (2002): deconvolved v distribution for B8–B9.5 stars
- Abt & Morrell (1995):
 deconvolved *v* distributions for
 A-type stars

4481 - weak

Shell

300

400

2D rotational velocity distribution of normal stars

2D rotational velocity distribution of normal stars

2D rotational velocity distribution of normal stars

Is this overdensity real ? Do slowly rotating early-type stars exist without displaying chemical peculiarity ?

probability

OBSERVING PROGRAMME

Selection:

- \bigcirc spectral class: B8- to A1
- luminosity class V, IV/V or IV
- o **not** known for being binary nor chemically peculiar
- $\bigcirc v \sin i < 65 \,\mathrm{km \, s^{-1}}$ (Royer et al. 2007)
- $\bigcirc V \lesssim 6.5 \,\mathrm{mag}$
- \bigcirc declination $\delta > -15^{\circ}$

Instruments:

- SOPHIE@T193, OHP France [$R \sim 75000$],
- ÉLODIE@T193, OHP France [$R \sim 42000$],
- \bigcirc HERMES@Mercator, La Palma (Belgian GTO) [$R \sim 85000$]

Objectives:

- 1. identify and confirm normal stars
 - discard spectroscopic binaries
 - perform spectral synthesis, SNR \sim 150–200
- 2. disentangle v and i for the confirmed normal stars
 - $\circ~$ search for gravity darkening signatures, SNR $\gtrsim 400$

Spectral range: 4000 – 6700 Å

A0–A1 stars47 objects

• $130 \leq \text{SNR} \leq 800$

○ B8–B9.5 stars

• 49 objects

• ongoing observations ...

Spectroscopic binaries are detected using:

- radial velocity variability
- shape of cross-correlation function
- consistency check on T_{eff} and log g: comparing luminosities from calibrated stellar radius (Torres et al. 2010) and from Hipparcos parallax 0 Days 2 4 6

A0–A1 subsample

Classification in the 14-dimension abundance space (C, O, Mg, Si, Ca, Sc, Ti, Cr, Fe, Ni, Sr, Y, Zr, and Ba)

Hierarchical classification tree:

○ 2 groups

stars (HD number)

Detection of new CP stars

- HD18104, HD30085, HD32867 and HD53588: HgMn stars (Monier et al. 2015)
- HD67044 (Monier et al. 2016)
- ongoing analysis for other objects

Characterisation of the sample

FAST ROTATION, GRAVITY DARKENING

Model: $3 M_{\odot} star - \Omega/\Omega_c = 90\%$

- geometrical deformation, centrifugal acceleration
- \Rightarrow non-uniform surface gravity and temperature

$$i = 90^{\circ}$$
 $i = 5^{\circ}$

Model: $3 M_{\odot} star - \Omega/\Omega_c = 90\%$

 $i = 90^{\circ}$

- geometrical deformation, centrifugal acceleration
- \Rightarrow non-uniform surface gravity and temperature

 $i = 5^{\circ}$

Model: $3 M_{\odot} star - \Omega/\Omega_c = 90\%$

- geometrical deformation, centrifugal acceleration
- \Rightarrow non-uniform surface gravity and temperature

Model: $3 M_{\odot} star - \Omega/\Omega_c = 90\%$

- geometrical deformation, centrifugal acceleration
- \Rightarrow non-uniform surface gravity and temperature

Distortion of the line profiles

Intensity maps vs T_{eff} and $\log g$

Distortion of the line profiles

Intensity maps vs T_{eff} and $\log g$

Previous studies on Vega

Analysis of 196 weak lines

- 87 neutral lines, sensitive to GD
- 109 ionized lines, insensitive to GD

Takeda et al. (2008)

Previous studies on Vega

Analysis of 196 weak lines

- 87 neutral lines, sensitive to GD
- 109 ionized lines, insensitive to GD

HIGH QUALITY REQUIRED !

- Gulliver et al. (1994) :
 R ~ 110 000, SNR~ 3300,
 [4487–4553Å]
- Takeda et al. (2008): *R* ~ 100 000, SNR~ 1000–3000, [3900–8800Å]

Takeda et al. (2008)

FASTROT computer code developed by Frémat et al. (2005):

- stellar photosphere = mesh of plane-parallel model atmospheres, each depending on the local temperature and surface gravity
- surface equipotentials = Roche approximation
- von Zeipel (1924) relation: $T_{\text{eff}}^4 \propto g^{\beta} \ (\beta = 1 \text{ for } T_{\text{eff}} > 7000 \text{ K})$

Methodology

Spectrum fitting SNR ≥ 700

- linelist (Takeda et al. 2008) + H β
- line-by-line fitting
- optimization of (T_{eff}, log g, Ω/Ω_c, i) using FASTROT and gradient method (iminuit)
- chemical abundances derived in a second step

Methodology

Spectrum fitting SNR ≥ 700

- linelist (Takeda et al. 2008) + H β
- line-by-line fitting
- optimization of (T_{eff}, log g, Ω/Ω_c, i) using FASTROT and gradient method (iminuit)
- chemical abundances derived in a second step

Mean profile fitting SNR ≳ 400

- \bigcirc selection of sensitive lines
- mean line profile from simple line addition
- grid of Fastrot models ($T_{\rm eff}$, log g, $\Omega/\Omega_{\rm c}$, i)
- \bigcirc selection of models in a range of T_{eff} and $v \sin i$
- scaling of model mean line profile
- \bigcirc best fitting model from χ^2

Example of spectrum fitting

normalized flux

Temperature maps

Examples of mean profile fitting

Parameter	Spectrum fitting	Mean profile fitting		
$T_{\rm eff}^{\rm nrcp}$	10450 K	10500 K		
$\log g^{\rm nrcp}$	3.77	3.80		
$v/v_{\rm c}$	0.75	0.80		
i	5.3°	5.0°		
υ	$257 {\rm km s^{-1}}$	$278 \mathrm{km s^{-1}}$		
$v \sin i_{ m true}$	$23.8 km s^{-1}$	$24.3 \mathrm{km s^{-1}}$		
$T_{\rm eff}^{\rm equa}$	8455 K	8111 K		
$T_{\rm eff}^{\rm pole}$	11176 K	11350 K		
$\log g^{\text{equa}}$	3.33	3.27		
log g ^{pole}	3.82	3.86		
Ω/Ω_c	0.867	0.900		

Preliminary table of results

Star	v sin i	υ	i
HD21050	26.6	×	×
HD25175	54.9	×	×
HD28780	32.1	142.9	13.0°
HD47863	44.2	259.4	9.8°
HD58142	18.3	×	×
HD73316	32.3	155.5	12.0°
HD85504	24.7	253.4	5.6°
HD89774	63.5	144.7	26.0°
HD104181	51.2	185.6	16.0°
HD132145	12.5	179.0	4.0°
HD133962	51.2	185.6	16.0°
Vega	21.8	208.8	6.0°
HD198552	52.5	×	×
HD219485	26.0	149.8	10.0°
HD223386	35.0	×	×
HD223855	64.2	349.1	10.6°

SIMULATED SAMPLE:

- 121 stars 1000 simulations
- $\bigcirc v$ generated from Royer et al. (2014)
- *i*: random orientation

SIMULATED SAMPLE:

- 121 stars 1000 simulations
- \bigcirc *v* generated from Royer et al. (2014)
- \bigcirc *i*: random orientation

- Detection of clear GD signatures
- Among the normal A0–A1 stars with $v \sin i < 65 \,\mathrm{km \, s^{-1}}$
 - 69% have $v > 140 \,\mathrm{km}\,\mathrm{s}^{-1}$ and low i
 - 31% have no detectable sign of GD
- Higher occurrence of low *i* than predicted by random orientation

- ► Analyse the B8–B9.5 sample to increase statistics of *i*
- Check/monitor the *intrinsic* slow rotators
- Study the very fast pole-on rotators (HD85504, HD47863, HD223855, ...).