Mixed modes gossips

Benoît Mosser, Kévin Belkacem

+ many colleagues Observatoire de Paris

AFE 2019

What is a mixed mode ?

• Mixed modes have amplitude in the enveloppe and in the core

✓ upper cavity in which acoustic modes can exist the restoring force is dominated by the pressure gradient

✓ inner cavity in which gravity modes can exist
the dominant restoring force is the buoyancy

✓ intermediate region, in which modes are evanescent, couples the cavities

can be used to probe the innermost layers

Mixed mode seismology \rightarrow evolved stars

Mixed mode seismology \rightarrow evolved stars

 hundreds of oscillating MS stars and thousands of RG stars

 highly accurate measurements of individual mode properties

Gossips?

- 1. Rumor or talk of a personal, sensational, or intimate nature.
- 2. A person who habitually spreads intimate or private rumors or facts.
- 3. Trivial, chatty talk or writing.
- **4.** A close friend or companion.

Non-exhaustive list of gossips

- Buoyancy glitches in clump stars
 - Subgiants
 - Scaling relations
 - Gravity offset
 - Rotational splittings
 - Stellars inclinations

Buoyancy glitches in clump stars \rightarrow core overshooting

= signature of the core overshooting

Gravity-mode offset \rightarrow core overshooting

Context: the high quality of Kepler observations allows us to characterize new asymptotic parameters; here the offset of gravity-modes

• Gravity mode periods: $P = \Delta \Pi_1 (-n_g + \varepsilon_g)$ (Pinçon* et al. 2019)

[* = AFE mixed modes collaboration]

The potential of ε_g to probe the value and slope of the Brunt–Väisälä frequency below the base of the convective region is clearly highlighted.

7

Scaling relations \rightarrow new model-independent calibration

Context: combined analysis of seismic (Kepler) and astrometric (Gaia) data

Definition of the seismic parallax

$$\varpi'_{\text{scaling}} = c_{\lambda} C_{\nu_{\text{max}}} C_{\langle \Delta \nu \rangle}^{-2} \left(\frac{\nu_{\text{max}}}{\nu_{\text{max},\odot}} \right)^{-1} \left(\frac{\langle \Delta \nu \rangle}{\langle \Delta \nu \rangle_{\odot}} \right)^{2} \left(\frac{T_{\text{eff}}}{T_{\text{eff},\odot}} \right)^{-5/2}$$

Comparison with the Gaia parallax

$$\varpi_{Gaia} - O_{Gaia} = C_{\nu_{\max}} C_{\langle \Delta \nu \rangle}^{-2} \varpi_{\text{scaling}}$$

Gaia offsetSeismic calibration factor(Khan*,** et al. 2019)[* = AFE mixed modes collaboration** = AF Gaia]

→ New model independent calibration of the Gaia offset and of the seismic calibration factor

Rotational splittings \rightarrow core overshooting

Context: the high quality of Kepler observations allows us to measure the core rotation

Automated measurement of ~900 RGB (Gehan* et al. 2018)

[* = AFE mixed modes collaboration]

Core rotation is constant along the red giant branch, with values independent of $M \rightarrow$ new constraints on the transfer of angular momentum

Stellar inclinations \rightarrow core overshooting

TESS subgiants \rightarrow deciphering the oscillation pattern

Probing the properties of stellar core with mixed modes

DonRodrigue, as-tu du Cœur ?Diègue

DonTout autre que mon pèreRodrigueL'éprouverait sur l'heure

Any but my father Might test it at this moment

Rodrigue, are you brave?

Pierre Corneille

le Cid, Acte I scène 5

Stone Crow Cider, Act I Scene 5