Project for "Action Fédératrice Etoiles"

Laboratory astrophysics and analysis of stellar spectra

PI : Lydia Tchang-Brillet

Members of the project:

- 1. Nicole Feautrier (LERMA), Elisabetta Caffau (GEPI) (Atomic collisions)
- 2. Lydia Tchang-Brillet, C. Balança, N. Champion (LERMA), Coralie Neiner, Richard Monier (LESIA) (Vacuum UV spectroscopy)

Laboratory studies of Vacuum Ultra-Violet (VUV) emission spectra of heavy element ions

<u>W.-Ü Lydia Tchang-Brillet</u>¹, Christian Balança¹, Norbert Champion¹ and Christophe Blaess¹

Collaborations: Ali Meftah^{2,1}, Djamel Deghiche² et doctorants Kamel Arab², Anis Chikh² Jean-François Wyart^{1,3}

1 LERMA, Observatoire de Paris-Meudon, PSL Research University; Sorbonne Universités, CNRS, Meudon, France

2 Laboratoire de Physique et Chimie Quantique, University Mouloud Mammeri in Tizi-Ouzou, Algeria

3 Laboratoire Aimé Cotton, CNRS, Université de Paris-Saclay, Orsay, France

Laboratoire d'Étude du Rayonnement et de la Matière en Astrophysique

RESEARCH UNIVERSITY PARIS

Huge amount of spectroscopic data needed for modeling astrophysical and laboratory plasmas

Since Hubble Space Telescope /STIS \Rightarrow high quality observational data

 \diamond Transition metals and lanthanides in stellar spectra (ex: chemically peculiar stars) \Rightarrow Abundances

♦ Fe V and Ni V lines in White Dwarf spectra
⇒ variation of α / gravitation

r-process element ions
 (lanthanides and actinides)
 formed in neutron star mergers

Lanthanide ions: IV and V spectra

 $5p^{6}4f^{N}$ and $4f^{N-1}$ nl, $5p^{5}4f^{N}$ nl open subshells

- Existing experimental data rather incomplete
- Dense and complex spectra in the Vacuum Ultra Violet (VUV) range (300-3000Å)
- need high resolution studies and systematic isoelectronic or isoionic approach
- Current works : Tm V, extension of Tm IV, high configurations of Nd IV

Also analysis of the Dy³⁺ spectrum and extension of Er³⁺, U⁴⁺ spectra

Transition metal ions Mn³⁺, Fe⁵⁺, Ni⁶⁺ (coll. Ryabtsev and colleagues, Institute of Spectroscopy Troitsk, Moscow, Russia and T. Raassen, P. Uylings Amsterdam) Forum_AFE_2_décembre_2019

Forum AFE 2 décembre 2019

Nd IV spectrum

High resolution VUV normal incidence 10m-spectrograph Paris - Meudon Observatory

- Concave holographic grating focal distance 10.7 m,
 3600 lines/mm, dispersion = 0.25 Å /mm first order
- Resolution $\sim 150~000~$ (8mÅ, slit 30 μm)
- One single exposure : 2 x 120Å on 18" photographic plates or 2 x 100Å on 15" image plates (IP)
- Wavelength range : 300-3000 Å

High voltage vacuum sparks for moderately charged ions (2 – 7 times)

Hollow Cathode for neutral or singly charged ions

(Penning discharge for molecular spectra)

Sections of thulium vacuum spark emission spectrum on image plate

15000

10000

5000

15000

10000

5000

600 Å

Int (u.a.)

Int (u.a.)

Photographic plate: For better wavelength measurements $\Delta\lambda = \pm 0.001-0.005 \text{\AA}$

Forum_AFE_2_décembre_2019

700 Å

The aim of the analysis :

to build the experimental energy level scheme from observed line wavelengths

 \diamond Consistency : Line intensities $\leftarrow \rightarrow$ calculated gA

 \Rightarrow assign a correct J value to each level

Theoretical Method (Racah-Slater): Parametric calculations RCN/RCG/RCE codes by R.D. Cowan

1) Ab initio step : Relativistic Hartree-Fock (HFR) $H = H_0 + H_1$

 H_0 : central field \rightarrow Hartree-Fock solution

 H_1 = electrostatic int. + relativistic corr. (spin-orbit)

- Diagonalization of $H_1 \rightarrow$ basis set of one or several configurations (CI)
- \Rightarrow E_{cal} and gA or log(gf)

matrix element : $H_{1ij} = \sum_{\alpha} c_{ij}^{\alpha} P_{\alpha}$ C_{ij}^{α} : angular part \rightarrow Racah algebra

Iterations

 P_{α} : radial integral \rightarrow ajustable energy parameters

Least squares fits to minimize
$$\Delta E = \sqrt{\sum_{i} (E_i^{exp} - E_i^{cal.})^2 / (N_i - N_p)} N_i \gg N_p$$

Iterative cycle (diagonalization + LSQ fit) Key points

- Correction of ab initio configuration $E_{average}$ according to observed transition array wavelengths \Rightarrow improved CI effects
- Correct correspondance $E_{cal} \Leftrightarrow E_{exp}$ for levels of same $J \Rightarrow gA$
- Good initial values for parameters : HFR values x scaling factors

Initial values of the parameters : HFR values or multiplied by a scaling factor SF=P_{fit}/P_{HFR}

Consistency of scaling factor (SF) values and effective CI parameters

Parameters	Nd IV	Nd V	Tm IV	Er II	Yb V	Er IV
	4f ³ +	4f ² +4f6p	4f ¹² +4f ¹¹ 6p	4f ¹² 6p	4f ¹² +4f ¹¹ 6p	4f ¹¹ +4f ¹⁰ 6p
	4f ² 5d+	4f5d+	4f ¹¹ 5d+	4f ¹² 5d	4f ¹¹ 5d+	4f ¹⁰ 5d+
F ² (4f,4f)	0.768	0.761	0.785	0.763	0.800	0.779
F ⁴ (4f,4f)	0.839	0.852	0.868	0.844	0.898	0.880
F ⁶ (4f,4f)	0.797	0.766	0.855	0.930	0.864	0.877
ξ_{4f}	0.932	0.927	0.982	0.981	0.982	0.991
F ² (4f,5d)	0.758	0.763	0.806	0.816	0.807	0.804
F ⁴ (4f,5d)	1.082	1.100	1.132	1.174	1.129	1.152
G ¹ (4f,5d)	0.846	0.860	0.751	0.683	0.774	0.693
G ³ (4f,5d)	0.954	0.983	0.974	1.013	0.960	0.966
G ⁵ (4f,5d)	0.839	0.868	0.830	0.753	0.843	0.822
F ² (4f,6p)	0.797	0.815	0.867	0.820	0.844	0.803
ζ _{6p}	1.207	1.168	1.17	1.320	1.143	1.173
Effective Cl parameter						
F ¹ (4f,5d)	758±57	839±147	866±106	902±62	819±81	1066±109

E _{upper} (cm ⁻¹)	J _{upper}	4f ¹⁰ 6p	λ(Å)	σ(cm ⁻¹)	Int _{exp}	gA((s^{-1}) E_{lo}	ver (cm ⁻¹)	J _{lower}	4f ¹⁰ 5d +6s				
249871.29	7.5	°Н	896.49	111546.14	150	1.585	E+10 138	325.83	7.5	6H				
			900.59	111038.31	157 P	8.208	E+09 138	833.94	8.5	⁶ I		Tm V		
			906.20	110350.91	141	1.989	E+10 139	521.49	6.5	⁶ G	1 1			
			1837.74	54414.58	181	9.472	E+09 195	456.43	8.5	⁶ I	LIN	es à iev	eis	
			1903.77	52527.23	22	2.197	E+09 19'	343.07	7.5	4 I				
250401.53	8.5	4K	892.25	112076.21	45	7.533	E+09 138	325.83	7.5	⁶ H				
			896.32	111567.29	169	1.536	E+10 138	833.94	8.5	⁶ I				
			918.04	108927.71	180	2.331	E+10 14	474.16	9.5	${}^{6}K$				
			959.40	104231.81	38	2.887	E+09 140	171.21	9.5	⁶ K				
			1820.03	54943.94	156	6.833	E+09 195	456.43	8.5	⁶ I				
			1884.74	53057.54	121	5.137	E+09 19'	343.07	7.5	4 I				
257574.44	7.5	⁶ K	893.63	111903.42	51	3.305	E+09 14:	671.02	8.5	${}^{4}K$				
260932 23 8 5		- Configura			J E _{ex}						LS level composition			
260932.23	85	┝ │(Configura	ations J	E	exp	Ecalc	ΔΕ	g Land	s I	LS level	composition		
260932.23	8.5		Configura	ations J	E (cr	exp n ⁻¹)	E _{calc} (cm ⁻¹)	ΔE (cm ⁻¹)	g Lando	S Comp.1	LS level o Perc.	composition Comp.2	Perc.	
260932.23	8.5		C onfigur: Odd 4f ¹¹	ations J	E (cr	exp n⁻¹) 0.00	E _{calc} (cm ⁻¹)	ΔE (cm ⁻¹) 2 -0.2	g Lando 1.196	Comp.1	LS level o Perc. 97%	composition Comp.2 ² K	Perc. 3%	
260932.23	8.5		C onfigur a Odd 4f ¹¹	ations J 7.5 6.5	E (cr 76	n⁻¹) 0.00 074.92	E _{calc} (cm ⁻¹) 0.2 7708.5	ΔE (cm ⁻¹) 2 -0.2 3 -33.9	g Lando 1.196 1.106	Comp.1	S level Perc. 97% 99%	composition Comp.2 ² K ² K	Perc. 3% 1%	
260932.23	8.5	_ (C onfigur: Odd 4f ¹¹ 4f ¹⁰ 6	ations J 7.5 6.5 5p 7.5	E (cr 76 2498	exp n ⁻¹) 0.00 74.92 71.29	E _{calc} (cm ⁻¹) 0.2 7708.5 249704.	ΔE (cm ⁻¹) 2 -0.2 3 -33.9 167.2	g Lando 1.196 1.106 1.276	$\begin{array}{c c} & \mathbf{I} \\ \hline \mathbf{Comp.1} \\ \hline \mathbf{Comp.1} \\ \hline \mathbf{Comp.1} \\ \hline \mathbf{Comp.1} \\ \mathbf{I} $	S level (Perc. 97% 99% 56%	composition Comp.2 ² K ² K (⁵ I) ⁴ I	Perc. 3% 1% 19%	
260932.23	8.5		C onfigur: Odd 4f ¹¹ 4f ¹⁰ 6	ations J 7.5 6.5 5p 7.5 8.5 8.5	E (cr 76 2498 2504	exp n ⁻¹) 0.00 074.92 071.29 01.53	E _{calc} (cm ⁻¹) 0.2 7708.3 249704. 250211.3	ΔE (cm ⁻¹) 2 -0.2 3 -33.9 167.2 189.7	g Lando 1.196 1.106 1.276 1.215	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	S level (Perc. 97% 99% 56% 41%	composition <u>Comp.2</u> ² K ² K (⁵ I) ⁴ I (⁵ I) ⁶ I	Perc. 3% 1% 19% 33%	
260932.23	8.5		C onfigur: Odd 4f ¹¹ 4f ¹⁰ 6	ations J 7.5 6.5 6p 7.5 8.5 7.5	E (cr 76 2498 2504 2575	exp 0.00 74.92 71.29 01.53 74.44	E _{calc} (cm ⁻¹) 0.2 7708.5 249704. 250211.5 257362.2	ΔE (cm ⁻¹) 2 -0.2 3 -33.9 167.2 8 189.7 2 12.2	g Lando 1.196 1.106 1.276 1.215 1.148	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	S level (Perc. 97% 99% 56% 41% 34%	composition <u>Comp.2</u> ² K ² K ⁽⁵ I) ⁴ I (⁵ I) ⁶ I (⁵ I) ⁴ K	Perc. 3% 1% 19% 33% 30%	
260932.23	8.5		C onfigur: Odd 4f ¹¹ 4f ¹⁰ 6	ations J 7.5 6.5 5p 7.5 8.5 7.5 8.5 7.5 8.5 7.5 8.5	E (cr 76 2498 2504 2575 2609	exp 0.00 74.92 71.29 01.53 74.44 32.23	E _{calc} (cm ⁻¹) 0.1 7708.1 249704. 250211.1 257362.1 261033.9	ΔE (cm ⁻¹) 2 -0.2 3 -33.9 167.2 189.7 2 212.2 9 -101.7	g Lando 1.196 1.106 1.276 1.215 1.148 1.240	$\begin{array}{c c} & & & I \\ \hline Comp.1 \\ \hline & {}^{4}I \\ \hline & {}^{4}I \\ \hline & {}^{5}I {}^{6}H \\ \hline & {}^{5}I {}^{6}K \\ {}^{5}I {}^{6}K \\ {}^{5}I {}^{6}I \\ \hline & {}^{5}I {}^{6}I \end{array}$	S level (Perc. 97% 99% 56% 41% 34% 57%	composition Comp.2 ² K ² K (⁵ I) ⁴ I (⁵ I) ⁶ I (⁵ I) ⁴ K (⁵ I) ⁴ K	Perc. 3% 1% 19% 33% 30% 32%	
260932.23 261034.65	8.5 9.5		C onfigur : Odd 4f ¹¹ 4f ¹⁰ 6	ations J 7.5 6.5 50 7.5 8.5 7.5 8.5 9.5	E (cr 76 2498 2504 2575 2609 2610	exp 0.00 74.92 71.29 01.53 74.44 932.23 934.65	E _{calc} (cm ⁻¹) 0.2 7708.9 249704. 250211.9 257362.2 261033.9 261133.0	ΔE (cm ⁻¹) 2 -0.2 3 -33.9 167.2 8 189.7 2 212.2 9 -101.7 5 -99.0	g Lando 1.196 1.106 1.276 1.215 1.148 1.240 1.254	$\begin{array}{c c} $	S level (Perc. 97% 99% 56% 41% 34% 57% 91%	composition <u>Comp.2</u> ² K ² K (⁵ I) ⁴ I (⁵ I) ⁶ I (⁵ I) ⁴ K (⁵ I) ⁴ K (⁵ I) ⁴ K (³ K) ⁴ L2	Perc. 3% 1% 19% 33% 30% 32% 7%	
260932.23 261034.65	8.5 9.5		Configur: Odd 4f ¹¹ 4f ¹⁰ 6	ations J 7.5 6.5 9.5 7.5	E (cr 76 2498 2504 2575 2609 2610 2619	exp 0.00 74.92 71.29 01.53 74.44 932.23 934.65 938.10	Ecalc (cm ⁻¹) 0.2 7708.3 249704. 250211.3 257362.2 261033.9 261133.0 261980.3	ΔE (cm ⁻¹) -0.2 -33.9 167.2 189.7 212.2 -101.7 -99.0 -42.7	g Lando 1.196 1.106 1.276 1.215 1.148 1.240 1.254 1.235	$\begin{array}{c c} & & & I \\ \hline & & Comp.1 \\ \hline & & {}^{4}I \\ \hline & & {}^{4}I \\ \hline & & {}^{5}I) {}^{6}H \\ \hline & & {}^{5}I) {}^{6}K \\ \hline & & {}^{5}I) {}^{4}I \end{array}$	S level (Perc. 97% 99% 56% 41% 34% 57% 91% 57%	composition Comp.2 ² K ² K (⁵ I) ⁴ I (⁵ I) ⁶ I (⁵ I) ⁴ K (⁵ I) ⁴ K (³ K) ⁴ L2 (⁵ I) ⁶ H	Perc. 3% 1% 19% 33% 30% 30% 32% 7% 31%	
260932.23 261034.65	8.5 9.5		Configur: Odd 4f ¹¹ 4f ¹⁰ 6	ations J 7.5 6.5 5p 7.5 8.5 7.5 8.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5	E (cr 76 2498 2504 2575 2609 2610 2619 2681	exp 0.00 74.92 71.29 01.53 74.44 932.23 934.65 938.10 53.00	Ecalc (cm ⁻¹) 0.2 7708.3 249704. 250211.3 257362.2 261033.9 261133.0 261980.3 268229.0	∆E (cm ⁻¹) 2 -0.2 3 -33.9 167.2 8 189.7 2 212.2 -101.7 5 -99.0 6 -42.7 6 -76.6	g Lando 1.196 1.106 1.215 1.215 1.148 1.240 1.254 1.235 1.184	$\begin{array}{c c} & & & I \\ \hline & & Comp.1 \\ \hline & & ^{4}I \\ \hline & & ^{4}I \\ \hline & & (^{5}I) \ ^{6}H \\ \hline & (^{5}I) \ ^{6}K \\ & (^{5}I) \ ^{6}K \\ \hline & (^{5}I) \ ^{6}K \\ \hline & (^{5}I) \ ^{6}I \end{array}$	S level (Perc. 97% 99% 56% 41% 34% 57% 91% 57% 54%	composition Comp.2 ² K ² K (⁵ I) ⁴ I (⁵ I) ⁶ I (⁵ I) ⁴ K (⁵ I) ⁴ K (³ K) ⁴ L2 (⁵ I) ⁶ H (⁵ I) ⁶ H (⁵ I) ⁴ K	Perc. 3% 1% 19% 33% 30% 32% 7% 31% 27%	
260932.23 261034.65	8.5 9.5		Configura Odd 4f ¹¹ 4f ¹⁰ 6	ations J 7.5 6.5 5p 7.5 8.5 7.5 8.5 7.5 8.5 7.5 8.5 7.5 8.5 7.5 8.5 7.5 7.5 5d	E (cr 76 2498 2504 2575 2609 2610 2619 2681 1383	exp 0.00 74.92 71.29 01.53 74.44 932.23 934.65 938.10 53.00 25.83	Ecalc (cm ⁻¹) 0.2 7708.3 249704. 250211.3 257362.2 261033.9 261133.0 261980.3 268229.0 138487.4	∆E (cm ⁻¹) 2 -0.2 3 -33.9 167.2 8 189.7 2 212.2 -101.7 5 -99.0 6 -42.7 6 -76.6 + -161.6	gLande 1.196 1.106 1.215 1.148 1.240 1.254 1.235 1.184 1.272	$\begin{array}{c c} & & & I \\ \hline & & Comp.1 \\ \hline & & ^{4}I \\ \hline & & ^{4}I \\ \hline & & (^{5}I) \ ^{6}H \\ \hline & & (^{5}I) \ ^{6}K \\ \hline & & (^{5}I) \ ^{6}K \\ \hline & & (^{5}I) \ ^{6}I \\ \hline & & (^{5}I) \ ^{6}I \\ \hline & & (^{5}I) \ ^{6}I \\ \hline & & (^{5}I) \ ^{6}H \\ \hline \end{array}$	S level Perc. 97% 99% 56% 41% 34% 57% 91% 57% 91% 54% 48%	composition Comp.2 ² K ² K (⁵ I) ⁴ I (⁵ I) ⁶ I (⁵ I) ⁴ K (³ K) ⁴ L2 (⁵ I) ⁶ H (⁵ I) ⁶ H (⁵ I) ⁶ H	Perc. 3% 1% 19% 33% 30% 32% 7% 31% 27% 28%	
260932.23 261034.65	8.5 9.5		Configur: Odd 4f ¹¹ 4f ¹⁰ 6 Even 4f ¹⁰	ations J 7.5 6.5 5p 7.5 8.5 7.5 8.5 9.5 7.5 5d 7.5 8.	E (cr 76 2498 2504 2575 2609 2610 2619 2681 383 5 1388	exp 0.00 74.92 71.29 01.53 74.44 932.23 934.65 938.10 53.00 25.83 933.94	Ecalc (cm ⁻¹) 0.2 7708.3 249704. 250211.3 257362.2 261033.9 261133.0 261980.3 261980.3 268229.0 138487.4 138935.2	∆E (cm ⁻¹) 2 -0.2 3 -33.9 167.2 8 189.7 2 212.2 9 -101.7 6 -99.0 6 -42.7 6 -76.6 4 -161.6 7 -101.8	gLande 1.196 1.106 1.276 1.215 1.148 1.240 1.254 1.235 1.184 1.272 1.254	$\begin{array}{c c} $	S level Perc. 97% 99% 56% 41% 34% 57% 91% 54% 48% 63%	Composition Comp.2 ² K ² K (⁵ I) ⁴ I (⁵ I) ⁶ I (⁵ I) ⁴ K (⁵ I) ⁴ K (³ K) ⁴ L2 (⁵ I) ⁶ H (⁵ I) ⁶ H (⁵ I) ⁶ K	Perc. 3% 1% 19% 33% 30% 32% 7% 31% 27% 28% 18%	
260932.23 261034.65	8.5 9.5		Configur: Odd 4f ¹¹ 4f ¹⁰ 6	ations J 7.5 6.5 5p 7.5 8.5 7.5 8.5 9.5 7.5 5d 7.5 8. 6.	E (cr 76 2498 2504 2575 2609 2610 2619 2619 2681 1383 5 1388 5 1395	exp 0.00 74.92 71.29 01.53 74.44 932.23 934.65 938.10 53.00 25.83 933.94 21.49	Ecalc (cm ⁻¹) 0.2 7708.9 249704. 250211.9 257362.2 261033.9 261133.0 261980.9 268229.0 138487.4 138935.2	∆E (cm ⁻¹) 2 -0.2 3 -33.9 167.2 8 189.7 2 212.2 -101.7 5 -99.0 -42.7 5 -76.6 - -161.6 - -101.8 - -153.2	gLande 1.196 1.106 1.276 1.215 1.148 1.240 1.254 1.235 1.184 1.272 1.254 1.254 1.324	$\begin{array}{c c} & & & I \\ \hline & & Comp.1 \\ \hline & & ^{4}I \\ \hline & & ^{4}I \\ \hline & & (^{5}I) \ ^{6}H \\ \hline & (^{5}I) \ ^{6}K \\ \hline & (^{5}I) \ ^{6}I \\ \hline & (^{5}I) \ \hline & (^{5}I$	S level Perc. 97% 99% 56% 41% 34% 57% 91% 57% 54% 48% 63% 58%	composition Comp.2 ² K ² K ⁽⁵ I) ⁴ I (⁵ I) ⁶ I (⁵ I) ⁴ K (⁵ I) ⁶ H (⁵ I) ⁶ I (⁵ I) ⁶ I (⁵ I) ⁶ F (⁵ I) ⁶ H (⁵ I) ⁶ H (⁵ I) ⁶ H	Perc. 3% 1% 19% 33% 30% 32% 7% 31% 27% 28% 18% 22%	

Nd IV

121 levels, 38 param., rms 37 cm⁻¹ Predicted E_{av}(5p⁵4f³5d) = 221000 cm⁻¹

Resonance transition intensities reduced by 1/2 due to CI 5p⁶4f²5d - 5p⁵4f³5d

Core-excited configurations (Arab et al 2019) 313 lines (400-650Å), 125 new levels 19 param. rms 182 cm⁻¹ $E_{av}(5p^{5}4f^{3}5d) = 221076 \text{ cm}^{-1}$

Conclusions

- Knowledge of experimental energy levels
- + parametric interpretation of atomic configurations
- $\Rightarrow E_{exp}$ for validation of ab initio E_{th} (E_{th} could deviate up to 30%)
- ⇒ Reliable semi-empirical values of gA or log(gf), lifetimes, branching ratios, Landé factors, partition fonctions
- \Rightarrow improved predictions for unknown levels and transition probabilities
- Systematic trends by isoelectronic or isoionic sequences
- \Rightarrow better estimation of scaling factors for the initial parameter values

\Rightarrow disentangling complex spectra

Identified lines and experimental level energies on molat.obspm.fr

Tm IV (EPJD 2007)

• 760 lines, 209 energy levels

Nd IV (J. Phys. B 2007)

• 1426 lines, 232 levels

Eu III (A&A 2008)

- 90 new lines, 30 new levels
- (1150 Ritz wavelengths)

Nd V (Physica Scripta 2008)

• 160 lines 48 levels

More recent

Yb V (Physica Scripta 2013)

• 1080 lines, 242 energy levels

Nd V (Physica Scripta 2015) for coreexcited configurations

• 304 lines, 104 energy levels

Er IV (J. Phys. B 2016)

• 591 lines, 120 energy levels

Nd IV (2019) for $5p^54f^35d$ core-excited configuration

• 313 lines, 125 energy levels

Coming soon U II (Atoms 2017) 541 UV lines, interpretation of 253 odd levels and 125 even levels

Calibration of a prototype UV polarimeter Schematics (C. Neiner LUVOIR/POLLUX)

Measurement of magnetic field without polarization?

Fe X: magnetic field induced transition (MIT)

Coll. R. Hutton, Y. Yang (Shanghai), T. Brage (Lund)

Schematic energy-level diagram for Cl-like ions with Z < 26 and zero nuclear spin, where $E(^{4}D_{7/2}) < E(^{4}D_{5/2})$ in $3s^{2}3p^{4}3d$. For Z > 26, $E(^{4}D_{5/2}) < E(^{4}D_{7/2})$.

B=0, E1 transition allowed from ${}^{4}D_{5/2}$ to the ground state, forbidden from ${}^{4}D_{7/2}$. When B \neq 0, ${}^{4}D_{7/2}$ is mixed with ${}^{4}D_{5/2}$, an E1 transition opens up from the ${}^{4}D_{7/2}$ to the ground state (MIT)

Thank you for your attention !