Numerical simulations with HADES : improvements & applications to Cepheids

Océane Saincir

3^e forum de l'Action Fédératrice Etoiles

Meudon, november, 26th

The outline of my talk

2 Diffusion approximation

The outline of my talk

2 Diffusion approximation

3 Application to Cepheids

5 (E + (E +

Radiation hydrodynamics

- Supersonic, hypersonic flows : compression of matter, high temperature, photons emission
- Radiation changes the dynamics and morphology of flows (feedback between hydrodynamics and radiation)
- Radiative flows in stellar physics

Stellar jets ©NASA, ESA, & M. Livio

SNR © Digitized sky Survey, ESA/ESO/NASA

HADES 2D

- Numerical code for the simulation of radiative hydrodynamics models
- Finite-volume approach
- Parallelized code written in Fortran 90
- Computation of physical quantities as a function of time
- Hydrodynamic quantities
 - Density : ρ
 - Velocity : u
 - Energy : E

- Radiative quantities
 - Radiative energy : E_R
 - Radiative flux : F_R
 - Radiative pressure : P_R

Equations of hydrodynamics

Euler equations :

$$\begin{cases} \partial_t \rho + \nabla \cdot (\rho \mathbf{u}) = 0, \\ \partial_t (\rho \mathbf{u}) + \nabla \cdot (\rho (\mathbf{u} \otimes \mathbf{u}) + p \mathbb{I}) = 0, \\ \partial_t E + \nabla \cdot (\mathbf{u} (E + p)) = 0. \end{cases}$$

Closure of the system : equation of state for ideal gas :

$$p = (\gamma - 1) \left(E - \frac{1}{2} \rho \mathsf{u}^2 \right),$$

with γ the adiabatic index.

Equations of radiative transfer

Equations of radiative transfer with photon-matter interaction :

$$\begin{cases} \partial_t E_R + \nabla \cdot \mathsf{F}_R = -c \ S^0, \\ \partial_t \left(c^{-2} \mathsf{F}_R \right) + \nabla \cdot \mathsf{P}_R = -\mathsf{S}. \end{cases}$$

Source terms (LTE) :

$$S^{0} = \kappa_{P} \left(E_{R} - a_{R} T^{4} \right),$$

$$S = \kappa_{R} F_{R}/c.$$

Planck mean opacity :

$$\kappa_P = rac{\int_
u \kappa(
u) B(
u,T) \, \mathrm{d}
u}{\int_
u B(
u,T) \, \mathrm{d}
u}$$

Rosseland mean opacity :

$$\kappa_R^{-1} = \frac{\int_{\nu} \chi^{-1}(\nu) \partial_T B(\nu, T) \, \mathrm{d}\nu}{\int_{\nu} \partial_T B(\nu, T) \, \mathrm{d}\nu}$$

Equations of radiative transfer

Generally, strong fluctuation of opacities

Multigroup strategy : segmentation of frequencies in G groups and calculation of radiative quantities for each group g = 1,...,G

Equations of radiation hydrodynamics

Strategy : Euler equations with multigroup model coupling

Radiative hydrodynamics equations :

$$Coupling \begin{cases} \partial_t \rho + \nabla \cdot (\rho \mathbf{u}) = \mathbf{0}, \\ \partial_t (\rho \mathbf{u}) + \nabla \cdot (\rho (\mathbf{u} \otimes \mathbf{u}) + p \mathbb{I}) = \sum_{g=1}^{\mathcal{G}} \mathbf{S}_g, \\ \partial_t E + \nabla \cdot (\mathbf{u} (E+p)) = \sum_{g=1}^{\mathcal{G}} c \ S_g^0, \\ \\ \mathsf{Rad} \begin{cases} \partial_t E_{R_g} + \nabla \cdot \mathsf{F}_{R_g} = -c \ S_g^0, & g = 1, \dots, \mathcal{G}, \\ \partial_t \left(c^{-2} \mathsf{F}_{R_g} \right) + \nabla \cdot \mathsf{P}_{R_g} = -\mathsf{S}_g, & g = 1, \dots, \mathcal{G}. \end{cases} \end{cases}$$

Numerical methods in HADES

System of equations of the form :

$$\frac{\partial \mathbf{q}}{\partial t} + \operatorname{div} \mathbf{f}(\mathbf{q}) = \mathbf{s}(t, \mathbf{q}).$$

Intervention of two subsystems :

Homogeneous partial differential system of equations

$$\frac{\partial \mathbf{q}}{\partial t} + \operatorname{div} \mathbf{f}(\mathbf{q}) = \mathbf{0}.$$

Ordinary differential system of equations

$$\frac{\mathrm{dq}}{\mathrm{d}t} = \mathrm{s}(t, \mathrm{q}).$$

Numerical methods in HADES

- Homogeneous PDE :
 - 2D finite-volume
 - Directional splitting
 - MUSCL-Hancock scheme
 - HLL, HLLC, HLLE solvers for flux computation

► ODE

• Explicit and implicit schemes : Euler methods, midpoint method, Runge-Kutta methods

Opacities handling :

- Tables of opacities : results from atomic physics calculations
- Opacity calculations : interpolation on the grid (ρ, T)

The outline of my talk

Radiation hydrodynamics

2 Diffusion approximation

3 Application to Cepheids

Radiative transfer : two asymptotic cases

- λ : mean free path of a photon
- L : characteristic length of the issuing medium
 - Optical thin medium : λ is very long with respect to the characteristic length L of the issuing medium (λ/L ≫ 1)
 - Weak interaction between photons and the medium
 - Energy loss measured by a cooling function
 - Case already included in the HADES code
 - Optical thick medium : $\lambda/L < 1$
 - Optical very thick medium : λ is very short with respect to the characteristic length L of the issuing medium (λ/L ≪ 1).
 - Fluid opaque to photons
 - Local radiative phenomena
 - Diffusion approximation

Description of radiative transfer much simpler. Faster calculations to comprehend physics

Diffusion approximation

Radiative quantities in the diffusion approximation :

•
$$E_R = a_R T^4$$

• $F_R = -\frac{1}{3} \frac{c}{\kappa_R} \nabla E_I$
• $P_R = \frac{1}{3} E_R \mathbb{I}$

Equations of the diffusion approximation :

$$\begin{aligned} \partial_t \rho + \nabla \cdot (\rho \mathbf{u}) &= 0, \\ \partial_t (\rho \mathbf{u}) + \nabla \cdot (\rho (\mathbf{u} \otimes \mathbf{u}) + p \mathbb{I}) &= -\frac{1}{3} \nabla E_R, \\ \partial_t E + \nabla \cdot (\mathbf{u} (E+p)) &= -\partial_t E_R + \frac{1}{3} \frac{c}{\kappa_R} \Delta E_R - \frac{4}{3} \nabla \cdot (\mathbf{u} E_R). \end{aligned}$$

Diffusion term in the third equation

Diffusion approximation

- Finite difference method for the computation of source terms
- Considering the finite volume equation written at spatial cell (*i*, *j*) and at time *tⁿ*, the source term is given by :

Code validation

Benchmark test : stationary radiative shock

• $M_x = 2000, M_y = 10$ and $T_f = 4.10^{-8}$

• Mean free path : $\lambda = 1$ micron

A TANK TAN

Results

Results

The outline of my talk

Radiation hydrodynamics

2 Diffusion approximation

Application to Cepheids

5 (E + (E +

Pulsating stars : Cepheids

- 1784 : 1st Cepheid δ Cephei discovered by J. Goodricke
- Yellow or red supergiant
- Stars with a regularly varying luminosity (P-L relationship discovered by H. Leavitt in 1912)

 $M = a(\log(P) - 1) + b$

 Distance indicators for extragalactic astronomy

FIGURE : RS Puppis

Cepheids and $H\alpha$ emissions

- Hα : spectral line in the deep-red visible created by hydrogen with a wavelength of 656.28 nm
- When hydrogen electron falls from third (n = 3) to second (n = 2) lowest energy level

 Strong Hα asymmetry for long-period Cepheids. Asymmetric P Cygni profile

P Cygni profile

Numerical simulations with HADES & applications to Cepheids 22/28

Example : l Carinæ (l Car)

Central absorption composant and emission composants (redshift and blueshift). Strong asymmetry

Work purpose

- Normally : spectral lines of a star absorption produced by its calm atmosphere
- P Cygni profile observed for stars which present stellar winds
- Hα asymmetries in long-period Cepheid profiles may be caused by the presence of strong shocks

Purpose : use of numerical tool to perform simulations of shocks in Cepheid envelopes and to reconstruct observables in order to compare with observations

Ideal candidate : *l* Carinæ (*l* Car)

- Readily visible to the naked eye Cepheid in the Carina constellation
- The higher apparent angular diameter : more accurate spectro interferometric measures

Period	Mass	Radius	Temperature	Radial velocity
35.560 j	$8.4-13~M_{\odot}$	$\approx 180 R_{\odot}$	5091 K	39 km/s

- CE around 10–100 AU with an average temperature of 100 K
- Velocity shock estimation : $v_{shock} = 100$ km/s (*N.Nardetto et al. 08*)
- Mach number

$$M = \frac{v_{shock}}{c} \approx 85$$

with c the sound velocity in the CE : $c=\sqrt{(\gamma p)/\rho}$

Modelling

Following of the local opacity evolution depending on density and temperature of the envelope

N A E N A E N

Work steps

- 1 Reconstruction of an observable from the physical quantities
- 2 Hydrodynamic simulations :
 - Envelope including constant density as well as density gradients
 - Envelope first at rest and then driven by stellar wind
 - Velocity field of the photosphere : ideal sinusoidal pulsation and then more realistic profiles
- 3 Radiation hydrodynamics simulations :
 - First step : diffusion approximation to prepare tables of opacities
 - Second step : full radiative transfer with the multigroup model (including one at the $H\alpha$ line)
- 4 Quantitative comparison of the numerical results with P. Kervella et al. observations

Thank you for your attention !